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ABSTRACT. We discuss an adaptive local refinement finite element .
~method for solving initial-boundary value problems for vector systems of

partial differential equations in one space dimension and time. The method ,'
uses piecewise bilinear rectangular space-time finite elements. For each time "
step, grids are automatically added to regions where the local discretization :

" : error is estimated as being larger than a prescribed tolerance. We discuss
~~several aspects of our algorithm, including th tree structure that is used to .
":i:" represent the finite element solution and grids, an error estimation technique, '

*i~ and initial and boundary conditions at coarse-fine mesh interfaces. We also i
*.- present computational results for a simple linear hyperbolic problem, a :

i-" problem involving Burgers' equation, and a model combustion problem.

":.:1. INTRODUCTION. There is an ever increasing need to solve
!... ."problems of greater complexity and a corresponding need for reliable and
:;,,-: robust software tools to accurately and efficiently describe the phenomena. .
".:: Adaptive techniques are good candidates for providing the computational

-;. methods and codes necessary to solve some of these difficult problems. Two.-
.. x .. popular adaptive techniques are: (i) moving mesh methods, where a grid of a :
, ~fixed number of finite difference cells or finite elements is moved so as to
.. ". follow and resolve local nonuniformities in the solution, and (ii) local ";

,'- ': refinement methods, where uniform fine grids are added to coarser grids in
* .. regions where the solution is not adequately resolved. A representative

~sample of both types of methods is contained in Babuska, Chandr,, and
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Flaherty (2]. Recently, Adjerid and Flaherty [1] deveaopea a relement
method that combines mesh moving and refinement.

Herein, we discuss a local refinement finite element procedure for
finding numerical solutions of M-dimensional vector systems of partial N
differential equations having the form

Lu ut * f(x,t,u,ux ) - [D(x,tu)ux x  0,

a < x < b, t > 0, (1.1)

subject to the initial conditions

u(xO) = u4(x) , aS x S b , (1.2)

and appropriate boundary conditions so that the problem has a well posed
solution.

We discretize (1.1,2) for a time step using a finite element-Galerkin
procedure with piecewise bilinear approximations on a rectangular space-time
net. At the end of each time step we estimate the local discretization error,
add finer subgrids of space-time elements in regions of high error, and
recursively solve the problem again in these regions. The process terminates
when the error estimate on each grid is less than a prescribed tolerance. The
original coarse space-time grid is then carried forward for the next time step
and the strategy is repeated. Our algorithm is discussed further in Flaherty
and Moore [9] and some of this discussion is repeated in Section 2.

Berger (31 used a similar local refinement procedure to solve one-and
two-dimensional hyperbolic systems. She used explicit finite difference
schemes to discretize the partial differential equations, while we use implicit
finite element techniques since we are primarily interested in parabolic
problems.

In addition to the discretization technique, the major numerical
questions that must be answered as part of the development of a local
refinement code are (i) the estimation of the discretization error and (ii) the
appropriate initial and boundary conditions to apply at coarse-fin. mesh
interfaces. Of course, Computer Science questions, such as which language
to use to describe and implement the various algorithms and what data
structures to use to represent and store the grids and solutions must also be I."
answered. Our work in all of these areas is still far from complete and herein
we only discuss our progress and thoughts on error estimation techniques,
data structures, and interface conditions (cf. Section 2). In Section 3, we
present the results of three examples that illustrate our method and the
discussion of Section 2, and in Section 4, we present some preliminary
conclusions and future plans.

2. FINITE ELEMENT ALGORITHM. We discretize equation (1.1) on a
strip a < x < 0, p < t < q using a finite element-Galerkin method with a
uniform grid of N rectangular elements of size (0 - a)/N by (q - p). We
refer to this grid as R(3.5,p.q,N,f,s), where f and s are pointers to the
father and son grids discussed later. Each grid uses records to store the
appropriate information. 9_

•" N,.*



.7

We generate the discrete system on R(u,O,p,q,N,f,s) in the usual
manner; thus, we ap.proximate u by U(x,t) and select test functions V(x,t),
where U and V are elements of a space of C' bilinear polynomials with respect
to the grid R. We then take the inner product of equation (1.1) and V,
replace u by U, and integrate any diffusive terms by parts to obtain

S[V T , vTf(xtUU VTD(xt,,U)U ]dxdt

R [V--

1vTD(x,t,U)U I dt 0 (2.2)
P

Equation (2.2) must vanish for all bilinear functions V on the grid R. The
integrals are approximated using a four point Gauss quadrature rule and the
resulting nonlinear system is solved by Newton iteration (cf.,e.g., [7] for
additional details). Appropriate initial and boundary conditions for (2.2) are
discussed later in this section.

We describe our local refinement procedure for solving problem (1.1,2) "
for one time step (tl,tl ) on a coarse grid with N' elements, i.e, on
R(a,b,t',tI,NI,0,s) (where the pointer f = 0 signifies that this grid has no
father). To solve this problem we simply call the procedure "locref" with the
arguments R(a,b,t',t ,N',O,s), tol, tsub for each coarse grid time interval.
A pseudo-PASCAL description of the procedure "locref" is shown in Figure 1.

-C'

procedure locref (R(a,O,p,q,N,f,s), tol, tsub)
begin

Solve the finite element equations (2.2) on R(t,5,p,q,N,f,s);
Estimate the error on R(iO,p,q,N,f,s);
if error > tol then

begin
calculate where error > tol and return the son grids;
for j := 1 to tsub do

for i 1 to number of sons do
begin

p[j] p * (j-1)*(q-p)/tsub;
q[j] p[j] * (q-p)/tsub;
locref (R(a[i], B[i],p[j],q[j],N[i] ,

R(*,5,p,q,N,f,s) ,s[i],tol,tsub)
end

end
end;

Figure I. Algorithm for local refinement solution of (1.1,2) on
R(a,5,p,q,N,f,s) with an error tolerance of tol and dividing the local time
step by tsub each time the error test is not satisfied.

The recu-sive algorithm locref sets up a tree structure of grids with
R~a..t,: %%.,s) being te root noce and with the solution being
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generated by a preorder traversal of the tree at each local time step. For
example, if the root grid is refined to give two subgrids and the time step is
halved, then the problem is solved on the first subgrid on its first time step,
then on the second subgrid on the same time step, then this procedure is
repeated for the second time step. The error is estimated by Richardson
extrapolation, i.e., the space and time steps are halved and the problem is
solved again on this new grid. The two solutions that are obtained at each
original grid point are used to generate an error estimate. If this pointwise
estimate exceeds the tolerance "tol", finer grids are added as leaf nodes to
the tree. This procedure is similar to one used by Berger [3]; however,
there are more economical error estimation strategies (cf., e.g., Bieterman
and Babuska [5, 6]) which we are currently investigating.

In order to solve, the finite element system (2.2) we need to supply
initial and boundary conditions. On any grid with p = 0, s = a, or S = b
these can be obtained from the initial condition (1.2) or prescribed boundary
conditions. However, artificial initial and boundary conditions must be created 0. %
at all other coarse-fine mesh interfaces. This is a difficult and crucial
problem that is discussed for explicit finite difference methods by Berger
[3, 4J; however, it is largely unanswered for finite element applications.
Instabilities or incorrect solutions (cf. Example 1 of Section 3) can result if
inappropriate conditions are specified.

For initial conditions, two strategies immediately come to mind: (i)
saving all fine grid data for propagation in time or (ii) interpolating the best
coarse grid data to finer grids. We consider a blend of the two strategies
which consists of saving the fine grid data down to a given level I in the
tree and subsequently interpolating for finer grids. Each grid in the first 1 L%7.
levels either has a linked list of the initial data directly associated with it or
uses an initial data list of an ancestor grid. To find the value of the solution
at some new initial point, the coordinate of that point is sequentially compared
to values in the linked list until an interval containing the point is found so
that interpolation can be used. This is costly and we are investigating more
efficient procedures that use the natural ordering that already exists. We
used either piecewise linear interpolation or piecewise parabolic interpolation
with shape preserving splines developed by McLaughlin (10]. For each grid
in the first I levels of the tree, a linked list is created to store the initial
data. We are studying several alternative ways of determining a proper value
for X.

At the present time, we prescribe internal Dirichlet boundary conditions
by linearly interpolating from coarse to finer grids. A buffer zone of two
elements is added to each end of regions of high error that do not intersect
the boundaries x = a and b. If two buffer zones overlap or are separated
from one another by one element, the two grids are joined. Similarly, if the
buffer is only one element away from either a or b, that element is added to
the grid.

3. NUMERICAL EXAMPLES. An experimental code based on the
algorithms in Section 2 has been written in FORTRAN-77. We are testing it
on several examples, some of these follow and others are presented in [9).
All results were computed in double precision on an IBM 3081D computer.
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Example 1. In order to illustrate the importance of adequately resolving
initial conditions at each time step we solve the linear hyperbolic initial value
problem

t x 0:

((1/2)(cos(201i(x-O.45)) -1)

u(x,0) u(x) =0.35 < x < 0.75
10 , otherwise

We solve this problem for one coarse time step of At 0.05, 10 elements on 0
< x < 1, tol = 0.01. For small enough times the exact solution is u*(x-t). If
initial conditions are interpolated from the coarse to the fine grid, the
oscillations are missed and an incorrect solution is computed, possibly without
a user realizing that there is anything wrong. However, saving Initial values
for the first 8 levels of the tree of grids calculates the correct solution to the
prescribed accuracy. The incorrect -and correct solutions are shown at
t 0.05 in Figure 2.

Example 2. We solve the following problem for Burgers' equation:

ut 4 uu x =dux 0 0< x < 1 0 0< t < I -
t --,x..

u(x,0) sinix , 0 < x < 1

u(0,t) u(1,t 0 , t > 0

We choose d = 0.00003, a coarse grid of 10 elements and At = 0.1, and
piecewise parabolic approximations for. the initial conditions with ) = 6. It is
well known, that .tbeso| tioa, of this-problem is a "pulse" that steepens as it
travels to the right until it forms a shock layer at x = 1. After a time of
O(1/d) the pulse dissipates and the. splution- decays to zero. We solve this
problem for *ol = 0.01 and 0.001 and show the solutions at t = 0.4 in Figure
3. The solution with the cruder tolerance is exhibiting some oscillations that
are within our bounds. Thesqe,.bownAw,-- m--ot-Vttble when the finer

. tolaraoce -it used to solve the problem.

Example 3. We solve the model combustion problem°, 4 .. 2,u-° =o < x< I, .0<t<, I
Ut xx2 , 0x 1,<~

u(x,0) = 0 , u(0,t)=0 , u (1,t) = 0

The exponential nonlinearity is typical in combustion problems having
Arrhenwus -chemical kinetics. However, in this case the solution develops a
"hot spot" at x = I and becomes infinite when t is approximately 0.85. We
choose a coarse grid of 20 elements and At = 0.05. tol 2 0.001, and I a 6. In
Figure 4 we show the computed solution U(x,t) as a function of x for t
0.05, 0.6, and 0.8 and in Figure 5 we show the mesh that was used to solve
the problem. We see that the mesh is initially concentrated in the region near
x = 0 where the curvature of the solution is largest. As time progresses and
the curvature diminishes, excessive refinement is not necessary. Finally, as
the solution begins to "blow-up" our algorithm generates a fine mesh only in
the region near x 1.

* ."='4" " *
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4. DISCUSSION AND CONCLUSIONS. We have briefly described an
adaptive local refinement algorithm for solving time dependent partial
differential equations. Even though this is very much a working algorithm,
and not a production code, we are very encouraged by the preliminary
results. We are investigating several possible ways of improving the
efficiency and robustness of our algorithm. These include adding higher
order ,polynomial finite element approximations, adaptively changing the -..
number of elements that are carried forward in the coarse grid at each coarse
time step, how to select the appropriate buffer length, adaptively determining
the optimal number of levels of initital conditions to keep at coarse-fine
interfaces, and the best boundary conditions to apply at internal boundaries.
We are encouraged by the performance of McLaughlin's [10] shape preserving
parabolic splines; however, the entire area of interpolating from coarse to
fine grids needs further study. We are also developing non-Dirichlet
"natural" boundary conditions to use at coarse-fine mesh interfaces.

Finally, we are very interested in combining the moving mesh strategy
of, e.g., [7, 8] with the present local refinement strategy and extending our
methods to two and three dimensions.
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